Чем отличается переменный ток от постоянного


Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератора

Упрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть  подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток — отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная - величину ЭДС (напряжение)

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле:  . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератора

Устройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротока

Графическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

asutpp.ru

Яндекс.Метрика